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An Adaptive Framework For Learning
Unsupervised Depth Completion
Alex Wong1, Xiaohan Fei2, Byung-Woo Hong3, and Stefano Soatto1

Abstract—We present a method to infer a dense depth map
from a color image and associated sparse depth measurements.
Our main contribution lies in the design of an annealing process
for determining co-visibility (occlusions, disocclusions) and the
degree of regularization to impose on the model. We show
that regularization and co-visibility are related via the fitness
(residual) of model to data and both can be unified into a single
framework to improve the learning process. Our method is an
adaptive weighting scheme that guides optimization by measuring
the residual at each pixel location over each training step for (i)
estimating a soft visibility mask and (ii) determining the amount
of regularization. We demonstrate the effectiveness our method
by applying it to several recent unsupervised depth completion
methods and improving their performance on public benchmark
datasets, without incurring additional trainable parameters or
increase in inference time.

Index Terms—Visual Learning, Sensor Fusion

I. INTRODUCTION

INFERRING scene geometry from images supports a va-
riety of tasks, from robotic navigation to image-based

rendering. We focus on depth completion, the process of
inferring a dense depth map at each instant of time, given an
image and sparse depth measurements, which may be obtained
from the same image(s) over time via structure-from-motion
(SFM), or from a secondary sensor such as a lidar. This is
an ill-posed problem, so the solution hinges on the choice
of regularization or prior assumptions on the scene. The data
fidelity criterion is the usual reprojection error customary in
stereo and SFM and subject to visibility phenomena, occlusion
and disocclusion. The regularizer imposes generic properties
of the scene, for instance piece-wise smoothness and local
connectivity.

There are two distinct phenomena where the data fidelity
term (or reprojection error) does not meaningfully constrain
the depth map to be inferred: Occlusions, and homogeneous
regions. In the latter, there exists a wide range of dispar-
ities, one typically chooses the “simplest” as defined by
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the regularizer, for instance the smoothest depth map. In
the former, no correct disparity map can fit the data term,
since there is no displacement of one image that can match
the other. Since no correct disparity exists, one should not
penalize the reprojection error in the occluded regions, leaving
the depth undefined. Both of these phenomena should be
captured, ideally in a unified fashion. The main difference
is that, whereas in homogeneous regions the data fidelity
is already minimized, so the influence of the regularizer is
increased automatically, in occluded regions the data fidelity
term is uninformative and should be actively ignored so depth
information should come from adjacent areas. Our goal is
to devise an adaptive unsupervised learning framework that
addresses both and fosters this process automatically.

The core of our approach is an adaptive weighting scheme
that varies over space (image domain) and time (training steps)
and informs (i) the probability of a given pixel being co-
visible in two views (for weighting data fidelity) and (ii)
the extent in which the prior assumptions (regularization)
should be imposed – driven by the evidence in the data.
To account for occlusions and disocclusions, we measure the
fitness (residual) of the model to the data at each spatial
position over each training time step. The result is a spatially
varying soft visibility mask, relevant for spatial tasks such as
navigation and manipulation, that adapts to the model over
training time. The same residual can be used to determine the
degree of regularization to impose on each spatial prediction,
enabling a second set of adaptive weights. What makes this
effective is the fact that, while the regularizers are generic (not
informed by large image datasets), the way they are applied
is driven by the evidence in the images, which leverages
their strength (mostly simplicity) where appropriate, and limits
the damage from their simplistic nature where necessary
(e.g. across occluding boundaries). Together, the two sets of
weights complement each other (i.e. occluded region requires
regularization) and are combined into a single framework that
can be generically applied to improve both existing and yet-to-
be-developed unsupervised depth completion methods to guide
their learning (optimization) to local minima that are more
compatible with the data.

Counter to current trends, our framework requires no extra
trainable parameters. It is entirely data-driven, leveraging
information from the intermediate fitness between model and
data as an adaptation signal for both sets of weights. It
adaptively weights the data fidelity and regularization terms
in the objective function during training and hence incurs
no additional run-time during inference. Yet, our framework
is able to consistently improve the performance of several
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recent unsupervised depth completion algorithms across public
benchmarks, such as KITTI [1] and VOID [2], and achieving
new state-of-the-art – thus, demonstrating its effectiveness. To
test the limits of our approach, we also provide a study on the
model performance with lower density of the sparse points.
Even with very few (0.05% density) points, our approach can
still improve exisiting depth completion methods.

Our contributions are: (i) an annealed visibility mask
that considers the fitness of model to data for determining
and discounting occlusions during training, (ii) the use of
residuals from multiple sensor modalities (image and depth)
to determine the degree of regularization, and (iii) a unified
framework that combines the adaptive weights for discounting
occlusions and determining regularization where each set of
weights plays a complementary role to the other; (iv) we show
that our framework can be generically applied to unsuper-
vised depth completion methods to achieve better performance
without incurring additional trainable parameter or run-time
complexity during inference.

II. RELATED WORK

Supervised Depth Completion. Existing methods regress
dense depth from an image and a sparse depth map by min-
imizing the difference between predictions and ground truth.
[3] computed confidence from convolutions and propagates
it through the layers. [4] performed upsampling followed by
convolution to fill the missing values. [5], [6], [7] used two
branches to process image and sparse depth separately. [5]
used early fusion with a ResNet encoder, while [6] used late
fusion. [7] also used late fusion, but with NASNet encoders
and jointly learned depth and semantic segmentation. [8]
proposed a 2D-3D fusion network. [9] learned confidence
maps for guidance and [10], [11] also used surface normals.
[12] formulated the problem as compressive sensing and [13]
as morphological operators.

All of these methods are supervised. They require ground-
truth, often unavailable, or the product of post-processing and
aggregation over a number of consecutive frames [1]. Such
supervision is not scalable; instead, we learn to predict dense
depth by fusing information from the abundant un-annotated
images and sparse depth data.
Unsupervised (Self-supervised) Depth Completion. Unsu-
pervised methods learn depth by minimizing the discrepancy
between prediction and sparse depth input, and between the
given image and its reconstructions from additional (stereo
or temporally adjacent) frames that are available only during
training. Stereo methods [6], [14] predict disparity to recon-
struct the given image from its stereo-counterpart and syn-
thesize depth from focal length and baseline. These methods
are generally limited to outdoor scenarios. Monocular methods
[2], [5], [15] jointly learn depth and pose by projecting from
temporally adjacent frames to a given image.

As depth completion is an ill-posed problem, regularization
is needed. [2], [5], [14] used a generic local smoothness prior
that is static with respect to the spatial domain of image and
the temporal domain of optimization. Whereas, [6] utilized
a learned prior (a separate network trained on ground-truth
depth) to regularize predictions. [15] learned a topology prior

on the sparse points from synthetic data and used it as reg-
ularization. We note that supervision from a network trained
on a specific domain (e.g. outdoors) will not generalize (e.g.
indoors) – defeating the purpose of unsupervised methods.
Hence, we forgo the use of a learned prior, but instead
propose a generic form of regularization that incorporates the
local fitness of the current model estimate to data. Unlike
conventional regularization, our approach is a locally adaptive,
data-driven weighting scheme that varies in space and time and
optimization to more desirable local minima.
Adaptive Weighting Schemes. Many imaging problems are
cast into the optimization of an energy function that con-
sists of data fidelity and regularization, where their relative
significance is typically determined by a static scalar, which
often leads to undesirable local minima due to heteroscedas-
ticity of residual measuring a discrepancy between model
and data. [16] determined the regularization parameter based
on noise variance, and [17] on the cross-validation criterion.
For depth completion, [2], [5], [14] determines the degree of
regularization based on the the image gradient. However, this
weighting scheme is still static with respect to a given image.
[18], [19], [20] proposed adaptive regularization in the spatial
domain and over the course of optimization based on the local
residual. However, their method considers only a single frame.
In contrast, we propose an adaptive data-driven algorithm
that deals with multiple frames obtained from multiple sensor
modalities (image and depth).

Unlike previous works, our method also considers occlu-
sions and disocclusions in the data term. [2], [5], [6], [14]
uniformly penalized all predictions without accounting for
them. Unsupervised monocular depth prediction methods [21],
[22], [23], [24] used an extra network to explicitly learn
visibility masks by jointly minimizing an unsupervised pho-
tometric loss and a penalty for the cardinality of the mask (to
avoid degenerate solution of all zeros). We discount unresolved
residuals (due to visibility) over the course of optimization
without incurring an extra network nor training time.

Uncertainty in Estimation. Our work is related to mea-
suring uncertainty for 3D reconstruction. [25], [26] proposed
to learn uncertainty from groundtruth for stereo. [27], [28]
learned confidences based on deviation from median disparity.
[29] did so in structure-from-motion (SfM) by leveraging
existing SfM systems and [21], [22], [23] in monocular
depth prediction. Unlike them, we showed that uncertainty or
confidence does not need to be learned, but can be observed
given the data. Our work is more in line with classic stereo
works [30] in using the matching cost as a confidence measure,
but unlike them, we used it to guide learning.

III. MOTIVATION

Our goal is to recover a 3D scene from an RGB image
I : Ω ⊂ R2 7→ R3

+ and its associated sparse depth measures z :
Ωz ⊂ Ω 7→ R+ in an unsupervised learning framework, where
depth information is inferred by exploiting additional stereo
imagery [6], [14] or temporally adjacent frames [2], [5] during
the training phase. In this work, we assume that temporally
adjacent frames, Iτ for τ ∈ {−1,+1} where I−1 denotes
the previous frame and I+1 the next one with respect to I ,
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are available. Thus, a training example comprises (I, Iτ , z).
Note: our method can easily be extended to stereo training. To
learn depth, unsupervised depth completion methods minimize
a loss function L that mainly consists of data fidelity D and
regularization R terms:

L(ẑ) = αD(ẑ) + γR(ẑ), ẑ = f(θ; I, z), (1)

where α and γ are pre-defined positive scalars that are applied
uniformly to data fidelity and regularization terms to modulate
their trade-off.

The model f , parameterized by θ, takes an image I and
sparse depth z, which resides in Ωz ⊂ Ω, as input and
produces dense depth ẑ : Ω 7→ R+. To learn depth, we
minimize Eqn. 1 over the entire training dataset. The data
fidelity term D is designed to penalize the combination of
discrepancies (i) between z and its prediction ẑ and (ii)
between I and its reconstruction Îτ . The reconstruction Îτ
from I is obtained by the following projection equation:

Îτ (x) = Iτ
(
p( gτ K

−1

[
x
1

]
ẑ(x))

)
, (2)

where x ∈ Ω, τ ∈ {−1,+1}, gτ is the relative pose between I
and Iτ , K the camera intrinsics, and p the projection operation.
There are two main problems in Eqn. 1: (i) Because D is
subject to occlusions and disocclusions when registering Iτ to
I and vice versa, occluded and disoccluded regions will yield
high reconstruction errors (residuals) and a uniform weighting
scheme α will penalize these regions despite the lack of co-
visibility. (ii) BecauseR is commonly a local smoothness (e.g.
total variation of ẑ) or a forward-backward consistency term,
a uniform weighting scheme γ will bias ẑ(x) for x ∈ Ω
to be smooth or consistent with another prediction without
considering the residuals or correctness of ẑ(x), which can
cause performance to degrade.

Hence, neither α nor γ should be static, but instead adapt
to the model and data for each prediction ẑ(x). As α and
γ are both related to data fidelity residuals (which evolves
throughout training), one must consider the temporal inter-
play between data fidelity and regularization over the course
of optimization. Thus, we propose residual-guided adaptive
weighting functions ατ (x) and γ(x), that vary in both space
(image domain) and time (optimization step), to determine
visibility and regularization. We combine them into a simple
yet effective framework (see Fig. 1), where their complemen-
tary effects (i.e. occluded regions require regularization) can
improve baseline unsupervised depth completion algorithms
without any additional trainable parameters.

IV. DETERMINING VISIBILITY OVER TIME

Given an image pair (I , Iτ ) and the depth predictions ẑ(x),
the reconstruction Îτ suffers from occlusions and disocclusions
because Iτ is captured from a different viewpoint. A static
(uniform weighting) α penalizes all discrepancies between
Îτ and Iτ equally regardless of visibility constraints, i.e. co-
visibility, occlusion or disocclusion, and thus requires the
model to resolve regions that are not co-visible.

Let us consider a scenario where all co-visible correspon-
dences are found, the reconstruction residual will still be non-
zero and hence the gradients will continue to update the model

Fig. 1. Diagram of the training pipeline using our framework. Given the
predicted depth ẑ, sparse depth z, image It and its reconstructions Îτ , our
framework (purple) is comprised of α (consists of ατ for τ ∈ {−1,+1})
and γ for adaptively weighting the data fidelity D and regularization R
in the loss function (red). Our framework does not require any additional
trainable parameters nor additional run-time complexity during inference; the
only component required during inference is the depth predictor (green).

parameters θ to find unresolvable correspondences up to the
allowed regularization, causing the model to move away from
the desired solution. One may discount occlusions and disoc-
clusions with a binary mask based on a fixed threshold (i.e.
in traditional SFM, stereo). This is applicable at convergence,
when all correspondences have been found. However, at early
time steps, predictions are largely random and hence will yield
high residuals. Thresholding would discount the training signal
and in turn impede learning. Hence, an adaptive weighting
scheme ατ ∈ [0, 1] for (I, Iτ ) should weight all pixels equally
at the early stages of training. As the model becomes more
confident in the correspondences found over the course of
training, ατ → 0 for regions with high residuals, gradually
discounting the errors.

A. Residual Function

We begin with a simple residual function as a measure
for determining whether a pixel is co-visible, or occluded or
disoccluded. Assuming images with intensity range of [0, 1]:

δτ (x) = |I(x)− Îτ (x)| for x ∈ Ω (3)

measures the discrepancy between I , and its reconstruction
Îτ (photometric error). Note: δτ can be replaced by a more
sophisticated measure such as SSIM [31], but we aim to
demonstrate the effectiveness of our proposed scheme with
a simple one. We then normalize the residual δτ to have a
zero-mean distribution with unit variance.

µτ =
1

|Ω|
∑
x∈Ω

δτ (x), σ2
τ =

1

|Ω|
∑
x∈Ω

(δτ (x)− µτ )2, (4)

ρτ (x) =
δτ (x)− µτ√

σ2
τ + ε

, (5)

where x ∈ Ω and ε is a small positive scalar used for
numerical stability. In the next section, we will use ρτ as a cue
to determine if a pixel is co-visible, or occluded or disoccluded
by constructing a soft visibility mask ατ that evolves over
training time.

B. Discounting Occlusions and Disocclusions

The weighting function ατ assigns the probability of co-
visibility between I and Îτ for each pixel by adaptively
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Fig. 2. The shape of ατ from mean residual µτ sampled after the 5th, 15th,
25nd and 35th epoch. x-axis denotes ρτ (x) and y-axis denotes the value of
ατ . ατ begins at a flat curve close to 1 and over time sharpens into a flipped
sigmoid. Binary thresholding is a special case of our approach.

adjusting a flipped sigmoid based on ρτ for every time step
(Fig. 2). Co-visible pixels will have a higher weight, while
occluded or dis-occluded pixels will have a lower weight:

ατ (x) = 1− 1

1 + exp(−(aρτ (x)− b))
, (6)

where a > 0 controls the curvature (steepness) of the sigmoid
and b ≥ 0 the shift. To enable adaptation over training time,
we vary a and b based on the mean residual µτ ∈ [0, 1]. The
steepness parameter a is designed to gradually increase over
training as the overall residual decreases:

a =
a0

µτ + ε
(7)

where a0 is a positive scalar based on the range of image
intensity. As we are unsure of the correspondences during the
early stages of training, ατ should be uniform over the spatial
domain Ω, which occurs as a→ 0. Towards convergence, ατ
takes on the shape of a flipped sigmoid to discount occlusions
and disocclusions. Hence, we let a be inversely proportional
to the mean residual µτ and we choose a0 to be close to 0.
At the start of training, µτ is large (making a small) and ατ
tends to a flat curve. As we converge, µτ → 0, making a
large and giving ατ sharper curvature.

Similarly, we also allow the shift parameter b of ατ to vary
over training time by making it a function of µτ :

b = b0(1− cos(π µτ )), (8)

where b0 is a positive constant used as the upper bound of
the shift and µτ ∈ [0, 1] leading to b ∈ [0, 2b0], following a
cosine decay rate. At the early time steps, µτ is large, and
thus b → 2b0 causing ατ to tend to 1. As residuals decrease
over training time, b → 0, resulting in ατ being a centered
flipped sigmoid function.

By making a and b a function of the mean residual µτ ,
the weighting function ατ becomes an annealing process to
detect occlusions or disocclusions. Because ατ is modulated
by both the local (per-pixel) residual as well as the mean
residual (generally decreases throughout training), ατ will
vary over both the image spatial domain and training time.
For every x ∈ Ω, ατ (x) ≈ 1 at the early stage of the
training, whereas ατ (x) approaches either 0 or 1 towards the

Fig. 3. ατ over training time. ατ varies spatially and over training time, and
reduces weight of occlusions and disocclusions regions (e.g. the borders of
the image and regions highlighted in green) as we become more confident in
correspondences between I and I+1.

convergence of the training. We note that the binary mask
produced by thresholding is a special case of our method
with specific a and b. We construct Fig. 2 by sampling µτ
over the course of training to illustrates how ατ is guided
by mean residual and varies over training time. Fig. 3 shows
ατ as an image. The co-visible pixels (yellow) are assigned
higher weight; whereas, the occluded and disoccluded ones
(blue) are assigned lower weight – as we train, the weight
of those regions decreases as we are more confident in our
predictions. In the data fidelity term D, one can apply ατ to
the photometric error Dph simply by:

Dph(ẑ) =
1

|Ω|
∑
x∈Ω

ατ (x)|I(x)− Îτ (x)|. (9)

V. ADAPTIVE REGULARIZATION

Regularization is typically imposed uniformly over the
prediction to make the depth completion problem well-posed.
For instance, a local smoothness term assumes a smooth
transition in ẑ(x) and penalizes discontinuities, but does not
account for object boundaries where depth discontinuities
generally occur. Hence, uniformly imposing regularity may
lead to an undesirably biased model (e.g. over-smoothing). To
allow discontinuities along object boundaries, previous works,
including, but not limited to [2], [5], [14], “adapt” to the data
by weighting R(x) based on the image gradients ∇I(x) – re-
ducing γ(x), the regularization parameter, in textured regions.
However, γ(x) is still static with respect to the image (same
weights for the same image). Also, this does not consider
residuals where regularization not only propagates the incor-
rect solution, but also restricts the model from exploring the
solution space (i.e. predicting large disparities). This also holds
for other regularizers, such as temporal consistency; enforcing
consistency with incorrect predictions only introduces more
errors.

Hence, γ ∈ [0, 1] should adaptively imposes regularization
based on residuals from both image and sparse depth. γ(x)
follows two simple principles for a given ẑ(x): (i) the higher
the residual, the lower the regularity. This not only lowers the
influence of incorrect predictions in a local neighborhood, but
also gives a model the flexibility to maximize its fitness to data.
(ii) the earlier the time step, the lower the regularity. The local
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Fig. 4. γ over training time. γ is low during early stages of training and
increases over time as mean residuals decrease. Regions of small residuals due
to noise and slight illumination change (highlighted) are gradually regularized.
For a local smoothness term, γ first allow the model to search for better
correspondences and gradually impose smoothness.

residual at early steps can be low depending on initialization,
applying regularization effectively limits the scope of the
solution space. Hence, small amounts of regularity should be
imposed to allow the model to explore. To illustrate these
seemingly counter-intuitive principles, let’s consider stereo
matching. One can predicted disparity up to the amount
allowable by regularization. If γ(x) is large, then one cannot
find long range correspondences; hence, we want to reduce
γ(x). Once the correspondence is found, we can leverage the
correct prediction to inform its neighbors’ predictions (e.g.
local smoothness).

A. Residual Functions
We will reuse the image reconstruction residual (Eqn. 3) as

our adaptation signal from an image. As we assume that there
are two temporally adjacent frames, Iτ for τ ∈ {−1,+1},
there exists two reconstructions of Iτ to guide γ. Following
our first principle to apply regularization when residual is low,
for each x ∈ Ω, we choose the minimum residual of the two
reconstructions:

δi(x) = min
τ

(δτ (x)) for x ∈ Ω. (10)

To obtain an adaptation signal from depth input, we consider
the sparse depth reconstruction residual:

δz(x) =

{
|ẑ(x)− z(x)|, if x ∈ Ωz,

0, if x ∈ Ω\Ωz.
(11)

Next, we will use δi and δz to construct γi (from image)
and γz (from sparse depth), and combine them to form our
adaptive regularization weighting scheme γ.

B. Image and Sparse Depth as Guidance
To realize our second principle of having a small γ(x) at

early time steps, we note a keen observation: while some
local residuals may be small, the mean residual will be large
and will gradually decrease over the course of optimization –
making it a good proxy for training time. Hence, γ(x) should
be inversely proportional to the mean residual. First, we model
γi, adaptive weights guided by image residuals, with a negative
exponential function:

γi(x) = exp(−ci µi δi(x)) for x ∈ Ω (12)

µi =
1

|Ω|
∑
x∈Ω

δi(x) (13)

where ci is a positive scalar based on the range of image
intensities. Similarly, we also construct γz , the set of adaptive
weights from sparse depth residuals:

γz(x) = exp(−cz µz δz(x)) for x ∈ Ωz (14)

µz =
1

|Ωz|
∑
x∈Ωz

δz(x) (15)

where cz is a positive scalar based on the range of depth
measurements. Both γi and γz are modulated by their re-
spective local and mean residuals. At early steps, both are
low and increase over time, except where ẑ(x) yield high
residuals. We note that modulating γi and γz with their mean
residuals as a proxy of training time is more stable than using
discrete training steps, which have no upper bound. If γi and
γz directly depend on training steps, then they may modify
the model even after convergence, and introduce instability.
In contrast, the mean residual stays approximately constant at
convergence and γi and γz will like-wise be stable.

Lastly, as noted by previous works, sparse depth and image
may conflict due to noise in depth sensor, and illumination
changes in images. To combine γi and γz , we assume depth
measurements (when available) are more reliable and choose
γz over γi, yielding the final adaptive weights:

γ(x) =

{
γz(x), if x ∈ Ωz,

γi(x), if x ∈ Ω\Ωz.
(16)

The behavior of γ is similar to anisotrophic diffusion at
convergence since the regions of high residuals will be oc-
clusion or disocclusions, which generally occurs across object
boundaries (see Fig. 4). However, unlike Sec. IV-B, we chose
a negative exponential over a sigmoid function because the
negative exponential is less aggressive at convergence. Recall
that ατ approaches a binary mask, but we still need some
regularity since the problem is ill-posed.

Assuming local smoothness as R, one can apply γ by:

R(ẑ) =
1

|Ω|
∑
x∈Ω

γ(x)||∇ẑ(x)||2 (17)

Together, ατ and γ complement each other. During early
time steps, ατ is high and γ is low, allowing the model
to explore the solution space for better correspondences.
As residuals decrease over time, ατ discovers occlusions or
disocclusions and discounts them. This is precisely when we
need regularity and consequently γ increases (see Fig. 3, 4).

We note that ατ and γ are general and can be constructed
with a stereo pair as well. In this case, there is only one
reconstruction from a stereo-counterpart, δi(x) is simply the
reconstruction residual (Eqn. 3) instead of the minimum resid-
ual from multiple views (Eqn. 10). To show that our framework
is applicable to both stereo and monocular training paradigms,
we use [14] as a baseline and construct ατ and γi using stereo
pairs (see Table II).

VI. IMPLEMENTATION DETAILS

All models using our framework are trained from scratch.
Our framework consists of computationally cheap operations
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Fig. 5. KITTI depth completion test set. VGG11 completely missed the building, and tree on the left and the wall on the right (highlighted in yellow). By
considering the fitness of the model to the data, our framework enables VGG11 to recover all of them. Green boxes highlight error regions for comparison.

TABLE I
ERROR METRICS

Metric Definition

MAE 1
|Ω|
∑
x∈Ω |ẑ(x)− zgt(x)|

RMSE
(

1
|Ω|
∑
x∈Ω |ẑ(x)− zgt(x)|2

)1/2
iMAE 1

|Ω|
∑
x∈Ω |1/ẑ(x)− 1/zgt(x)|

iRMSE
(

1
|Ω|
∑
x∈Ω |1/ẑ(x)− 1/zgt(x)|2

)1/2
Error metrics used in Table II, III. zgt denotes the ground truth.

and only increases training time by ≈ 2.2%, and incurs no
additional parameters or inference time.

Hyper-parameters: ατ and γ are set based on the range
of input. Image intensities are scaled between 0 and 1 for
both KITTI and VOID. Depth ranges from 1m to 100m in
KITTI and 0.1m to 10m in VOID. We choose a0 = 0.10,
b0 = 4.0 and ε = 10−8 for ατ . The same a0 and b0 are used
for both ατ . We set ci = 1.0, cz = 0.01 for γ to adjust for
the difference in magnitude between image and depth values.
The same hyper-parameters are used for all methods for both
KITTI and VOID except for ci, which we set to 0.70 (less
aggressive weighting) for VOID since indoor scenes contains
more textureless surfaces and requiring more regularity. For
the same reason, to train [5] on VOID, we set the weight of
their smoothness term to 1.0 (10× their proposed weight).

VII. EXPERIMENTS AND RESULTS

We applied our adaptive framework (ατ and γ) to recent
unsupervised depth completion methods and evaluate the rela-
tive improvements on the KITTI [1] in Sec. VII-A (outdoors)
and VOID [2] in Sec. VII-B (indoors).

A. KITTI Unsupervised Benchmark

KITTI provides ≈ 80, 000 synchronized stereo pairs and
sparse depth maps of ≈ 1242 × 375 resolution for outdoor
driving scenes. The sparse depth maps are captured by a
Velodyne lidar sensor (≈ 5% density) and projected onto
the image frame. The ground-truth depth map is created by
accumulating the neighbouring 11 raw lidar scans, with dense
depth corresponding to the lower 30% of the images.

We apply our framework to [5], [14], and VGG8, and
VGG11 of [2] and evaluate them on the KITTI validation set
in Table II using error metrics in Table I. Due to the limit of
one entry per method on the KITTI online test benchmark,
we chose to show the relative improvements on the validation
set – before and after applying ατ and γ. The results listed

TABLE II
QUANTITATIVE RESULTS ON KITTI VALIDATION SET

Method MAE RMSE iMAE iRMSE

Ma 358.92 1384.85 1.60 4.32

Ma + our ατ , γ 332.54 1301.42 1.43 4.01

Shivakumar 396.43 1285.79 1.37 4.05

Shivakumar + ατ , γ 346.18 1231.06 1.31 3.84

VGG8 (Wong) 308.81 1230.85 1.29 3.84

VGG8 (Wong) + ατ , γ 298.89 1189.43 1.18 3.64

VGG11 (Wong) 305.06 1239.06 1.21 3.71

VGG11 (Wong) + ατ , γ 291.57 1186.07 1.16 3.58

Results of [5], [2] are taken from their papers. Results of [14] were
not available; hence, we train [14] from scratch. Our approach (en-
tries with + ατ , γ) consistently improves all methods across all metrics.

are taken directly from their papers except for [14], which
were not reported. We trained their model from scratch in
Table II. While we primarily focus on the monocular training,
we include [14] to show that our framework can also be
applied to and improve methods using stereo training.

Table II shows that our framework consistently improves all
methods across all metrics. While our method can be used to
improve both existing and yet-to-be-developed methods, the
real test is whether it can boost an underperforming method
over the state of the art. Hence, a key comparison is between
VGG8, VGG8 + ατ , γ and VGG11. Indeed, our framework
improves an inferior method, VGG8, over the state-of-the-art
VGG11 across all metrics on the KITTI depth completion
validation set as well as the official online KITTI depth
completion test set (Table IV, Supp. Mat.) to achieve the state-
of-the-art on unsupervised depth completion. Fig. 5 shows
that our framework can help VGG8 more correctly recover
the scene. We note that the performance boost is almost free
(≈ +2.2% in training time) – there is no additional parameters,
pre- or post-processing, nor increase in inference time. The
gain is solely from guiding the learning (optimization) process
via adaptively weighting their objective function.

B. VOID Unsupervised Benchmark
VOID provides ≈ 47, 000 synchronized images and sparse

depth maps of 640× 480 resolution of indoor scenes. Sparse
depth (≈ 1500 points, covering ≈ 0.5% of the image) are the
set of features tracked by XIVO [32]. The ground-truth depth
maps are dense and are acquired by active stereo. The testing
set contains 800 frames.
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Fig. 6. VOID depth completion test set. We apply our framework to [5], VGG8, and VGG11 of [2]. Our approach consistently improves the overall scene.
While depth maps may look similar, the error map of each method using our framework (+ ατ , γ) is a shade of red darker (lower error). For example, We
observe large improvements in smooth surfaces (tables, walls, staircases) Green boxes highlight regions for comparison.

TABLE III
VOID TEST SET AND ABLATION STUDY ON ατ AND γ

Method MAE RMSE iMAE iRMSE

Ma 178.85 243.84 80.12 107.69

Ma + ατ , γ 154.48 220.63 64.68 91.77

VGG8 (Wong) 98.45 169.17 57.22 115.33

VGG8 (Wong) + ατ , γ 86.25 153.05 49.26 94.74

VGG11 (Wong) 85.05 169.79 48.92 104.02

VGG11 (Wong) + ατ 83.24 139.52 47.51 83.69

VGG11 (Wong) + γ 78.20 140.86 45.41 85.20

VGG11 (Wong) + ατ , γ 78.79 135.93 43.62 78.22

Our framework (+ ατ , γ) consistently improves all methods across all met-
rics. ατ and γ provide complementary benefits. The ablation study (last
4 rows) on VGG11 shows that γ improves MAE and iMAE, and ατ ,
RMSE and iRMSE. When used together, they achieve the best results..

We apply our framework on [5], VGG8 and VGG11. Since
[5] and VGG8 did not report results on VOID, we trained
their models from scratch. Note: [14] requires stereo pairs for
training, so we cannot train their model on VOID.

VOID consists of indoor scenes with many textureless sur-
faces (e.g. walls, cabinets) and non-trivial 6 degrees of freedom
motion. Hence, (i) regularization is even more important as the
data fidelity term does not provide useful local information.
This is where γ is helpful. By adjusting the regularity based
on residuals, γ allows the model to find correspondences first,
then impose regularization. Moreover, (ii) due to the large
motion, occlusions and disocclusions can easily cause the
model to leave a desirable local minimum. ατ mitigates their
impact by discounting them over time. The effectiveness of
our framework can be seen in Table III and Fig. 6, where we
improved all methods by large margins across all metrics. We
hypothesize the large gain in iMAE and iRMSE metrics may
be due to the low density of depth measurements. Hence, the
model must rely heavily on the signal from the image, which
is guided by ατ and γ.

As an ablation study, we examine ατ and γ (Table III)
individually on VGG11 and find that both provide comple-
mentary benefits. γ provides more improvements to MAE and
iMAE while ατ improves RMSE and iRMSE. Note: the MAE
improvement from γ (last 2 rows) is comparable to our full
model. This is because ατ reduces outliers (as measured by

TABLE IV
ABLATION STUDY OF VARIOUS DENSITY LEVELS ON VOID TEST SET

Method MAE RMSE iMAE iRMSE

≈0.50% density

VGG11 [2] 85.05 169.79 48.92 104.02

VGG11 + ατ , γ 78.79 135.93 43.62 78.22

≈0.15% density

VGG11 [2] 124.11 217.43 66.95 121.23

VGG11 + ατ , γ 112.31 188.60 59.47 101.26

≈0.05% density

VGG11 [2] 179.66 281.09 95.27 151.66

VGG11 + ατ , γ 155.01 262.54 83.55 140.98

The percent density levels correspond to roughly 1500, 500, and 150 points,
respectively. By applying our framework to VGG11 [2], we improve their
model across all metrics and consistently across all density levels. These
are the scenarios where unsupervised depth completion methods must rely
on the image – due to the lack of sparse points. They are also the
scenarios where our framework can provide improvements, especially for
indoor scenarios. Thus, even at ≈0.05% density, we still boost performance.

RMSE metrics) caused by occlusions and disocclusions while
γ improves the overall accuracy of the scene (as measured by
MAE metrics) through regularization.

To evaluate the effect of different density levels, we provide
an ablation study on the VOID [2] dataset, which provides
three levels: ≈0.50%, ≈0.15% and ≈0.05% of the image space
– each of these densities corresponds to roughly 1500, 500,
and 150 points. In Table IV, we show the results of VGG11
[2], directly taken from their paper, and the results of VGG11
trained with our framework. We observe consistent improve
across all metrics and across all density levels. As the density
of the input sparse depth decreases, one must rely on the
image even more. For indoor, this becomes difficult as surfaces
are commonly textureless and motion is more challenging
(causing occlusions and dis-occlusions).

This is precisely where our method can provide improve-
ments. Our framework produces a soft visibility mask ατ to
deal with occlusions and dis-occlusions and γ to determine
the strength of regularization, which, in this setting, generally
involves local smoothness and forward-backward consisten-
cies. ατ discounts occlusion and dis-occlusions over time so
that the model does not get driven out of a desirable local
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minimum due to unresolvable residuals. In the case where
correspondences are not found, γ allows the model enough
flexibility to search for long-range matches (as opposed to
uniform weight, which may restrict the model to shorter
distances in the image space depending on selected scalar).
Once a correspondence is found, γ increases regularization
and propagates the solution to its neighbors, which directly
impacts textureless regions, occluded and dis-occluded re-
gions, and prevents over-smoothing. Together, ατ and γ play
complementary roles by discounting residuals at occluded and
dis-occluded regions while propagating depth values from co-
visible regions to those locations.

VIII. DISCUSSION

We have provided a general residual-driven framework for
determining co-visibility and the degree of regularization over
the optimization process. While our framework improves un-
supervised depth completion methods without compromising
run-time, it does require tuning several parameters depending
on the range of sensors and environment. We use simple
measure of residual and do not consider sparse depth in ατ .
We also assume depth measurements are reliable than images
when constructing γ. In reality, both camera and depth sensors
have failure modes. Perhaps considering hardware uncertainty
can better combine the two. We leave this for future work.
There is a long road ahead, but we hope that our simple
framework can lay the foundation for better balancing of data
fidelity and regularization through sensor fusion.
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